Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@aws-cdk/aws-lambda-python

Package Overview
Dependencies
Maintainers
4
Versions
171
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@aws-cdk/aws-lambda-python

The CDK Construct Library for AWS Lambda in Python

  • 1.204.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
4
Created
Source

Amazon Lambda Python Library


End-of-Support

AWS CDK v1 has reached End-of-Support on 2023-06-01. This package is no longer being updated, and users should migrate to AWS CDK v2.

For more information on how to migrate, see the Migrating to AWS CDK v2 guide.


This library provides constructs for Python Lambda functions.

To use this module, you will need to have Docker installed.

Python Function

Define a PythonFunction:

new lambda.PythonFunction(this, 'MyFunction', {
  entry: '/path/to/my/function', // required
  runtime: Runtime.PYTHON_3_8, // required
  index: 'my_index.py', // optional, defaults to 'index.py'
  handler: 'my_exported_func', // optional, defaults to 'handler'
});

All other properties of lambda.Function are supported, see also the AWS Lambda construct library.

Python Layer

You may create a python-based lambda layer with PythonLayerVersion. If PythonLayerVersion detects a requirements.txt or Pipfile or poetry.lock with the associated pyproject.toml at the entry path, then PythonLayerVersion will include the dependencies inline with your code in the layer.

Define a PythonLayerVersion:

new lambda.PythonLayerVersion(this, 'MyLayer', {
  entry: '/path/to/my/layer', // point this to your library's directory
})

A layer can also be used as a part of a PythonFunction:

new lambda.PythonFunction(this, 'MyFunction', {
  entry: '/path/to/my/function',
  runtime: Runtime.PYTHON_3_8,
  layers: [
    new lambda.PythonLayerVersion(this, 'MyLayer', {
      entry: '/path/to/my/layer', // point this to your library's directory
    }),
  ],
});

Packaging

If requirements.txt, Pipfile or poetry.lock exists at the entry path, the construct will handle installing all required modules in a Lambda compatible Docker container according to the runtime and with the Docker platform based on the target architecture of the Lambda function.

Python bundles are only recreated and published when a file in a source directory has changed. Therefore (and as a general best-practice), it is highly recommended to commit a lockfile with a list of all transitive dependencies and their exact versions. This will ensure that when any dependency version is updated, the bundle asset is recreated and uploaded.

To that end, we recommend using [pipenv] or [poetry] which have lockfile support.

Packaging is executed using the Packaging class, which:

  1. Infers the packaging type based on the files present.
  2. If it sees a Pipfile or a poetry.lock file, it exports it to a compatible requirements.txt file with credentials (if they're available in the source files or in the bundling container).
  3. Installs dependencies using pip.
  4. Copies the dependencies into an asset that is bundled for the Lambda package.

Lambda with a requirements.txt

.
├── lambda_function.py # exports a function named 'handler'
├── requirements.txt # has to be present at the entry path

Lambda with a Pipfile

.
├── lambda_function.py # exports a function named 'handler'
├── Pipfile # has to be present at the entry path
├── Pipfile.lock # your lock file

Lambda with a poetry.lock

.
├── lambda_function.py # exports a function named 'handler'
├── pyproject.toml # your poetry project definition
├── poetry.lock # your poetry lock file has to be present at the entry path

Custom Bundling

Custom bundling can be performed by passing in additional build arguments that point to index URLs to private repos, or by using an entirely custom Docker images for bundling dependencies. The build args currently supported are:

  • PIP_INDEX_URL
  • PIP_EXTRA_INDEX_URL
  • HTTPS_PROXY

Additional build args for bundling that refer to PyPI indexes can be specified as:

const entry = '/path/to/function';
const image = DockerImage.fromBuild(entry);

new lambda.PythonFunction(this, 'function', {
  entry,
  runtime: Runtime.PYTHON_3_8,
  bundling: {
    buildArgs: { PIP_INDEX_URL: "https://your.index.url/simple/", PIP_EXTRA_INDEX_URL: "https://your.extra-index.url/simple/" },
  },
});

If using a custom Docker image for bundling, the dependencies are installed with pip, pipenv or poetry by using the Packaging class. A different bundling Docker image that is in the same directory as the function can be specified as:

const entry = '/path/to/function';
const image = DockerImage.fromBuild(entry);

new lambda.PythonFunction(this, 'function', {
 entry,
 runtime: Runtime.PYTHON_3_8,
 bundling: { image },
});

Custom Bundling with Code Artifact

To use a Code Artifact PyPI repo, the PIP_INDEX_URL for bundling the function can be customized (requires AWS CLI in the build environment):

import { execSync } from 'child_process';

const entry = '/path/to/function';
const image = DockerImage.fromBuild(entry);

const domain = 'my-domain';
const domainOwner = '111122223333';
const repoName = 'my_repo';
const region = 'us-east-1';
const codeArtifactAuthToken = execSync(`aws codeartifact get-authorization-token --domain ${domain} --domain-owner ${domainOwner} --query authorizationToken --output text`).toString().trim();

const indexUrl = `https://aws:${codeArtifactAuthToken}@${domain}-${domainOwner}.d.codeartifact.${region}.amazonaws.com/pypi/${repoName}/simple/`;

new lambda.PythonFunction(this, 'function', {
  entry,
  runtime: Runtime.PYTHON_3_8,
  bundling: {
    environment: { PIP_INDEX_URL: indexUrl },
  },
});

The index URL or the token are only used during bundling and thus not included in the final asset. Setting only environment variable for PIP_INDEX_URL or PIP_EXTRA_INDEX_URL should work for accesing private Python repositories with pip, pipenv and poetry based dependencies.

If you also want to use the Code Artifact repo for building the base Docker image for bundling, use buildArgs. However, note that setting custom build args for bundling will force the base bundling image to be rebuilt every time (i.e. skip the Docker cache). Build args can be customized as:

import { execSync } from 'child_process';

const entry = '/path/to/function';
const image = DockerImage.fromBuild(entry);

const domain = 'my-domain';
const domainOwner = '111122223333';
const repoName = 'my_repo';
const region = 'us-east-1';
const codeArtifactAuthToken = execSync(`aws codeartifact get-authorization-token --domain ${domain} --domain-owner ${domainOwner} --query authorizationToken --output text`).toString().trim();

const indexUrl = `https://aws:${codeArtifactAuthToken}@${domain}-${domainOwner}.d.codeartifact.${region}.amazonaws.com/pypi/${repoName}/simple/`;

new lambda.PythonFunction(this, 'function', {
  entry,
  runtime: Runtime.PYTHON_3_8,
  bundling: {
    buildArgs: { PIP_INDEX_URL: indexUrl },
  },
});

Keywords

FAQs

Package last updated on 19 Jun 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc